Multiagent reinforcement learning with the partly high-dimensional state space

نویسندگان

  • Kazuyuki Fujita
  • Hiroshi Matsuo
چکیده

In Multi-Agent Reinforcement Learning, each agent observe a state of other agents as a part of environment. Therefore, the state space is exponential in the number of agents and learning speed significantly decrease. Modular Q-learning [6] needs very small state space. However, the incomplete observation involves a decline in the performance. In this paper, we improve Modular Q-learning’s performance with the partly high-dimensional state space.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Multiagent Reinforcement Learning algorithm to solve the Community Detection Problem

Community detection is a challenging optimization problem that consists of searching for communities that belong to a network under the assumption that the nodes of the same community share properties that enable the detection of new characteristics or functional relationships in the network. Although there are many algorithms developed for community detection, most of them are unsuitable when ...

متن کامل

Analysis of an evolutionary reinforcement learning method in a multiagent domain

Many multiagent problems comprise subtasks which can be considered as reinforcement learning (RL) problems. In addition to classical temporal difference methods, evolutionary algorithms are among the most promising approaches for such RL problems. The relative performance of these approaches in certain subdomains (e. g. multiagent learning) of the general RL problem remains an open question at ...

متن کامل

State Elimination in Accelerated Multiagent Reinforcement Learning

This paper presents a novel algorithm of Multiagent Reinforcement Learning called State Elimination in Accelerated Multiagent Reinforcement Learning (SEA-MRL), that successfully produces faster learning without incorporating internal knowledge or human intervention such as reward shaping, transfer learning, parameter tuning, and even heuristics, into the learning system. Since the learning spee...

متن کامل

The Self Organization of Context for Learning in MultiAgent Games

Reinforcement learning is an effective machine learning paradigm in domains represented by compact and discrete state-action spaces. In high-dimensional and continuous domains, tile coding with linear function approximation has been widely used to circumvent the curse of dimensionality, but it suffers from the drawback that human-guided identification of features is required to create effective...

متن کامل

The Self Organization of Context for Learning in Multiagent Games

Reinforcement learning is an effective machine learning paradigm in domains represented by compact and discrete state-action spaces. In highdimensional and continuous domains, tile coding with linear function approximation has been widely used to circumvent the curse of dimensionality, but it suffers from the drawback that human-guided identification of features is required to create effective ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Systems and Computers in Japan

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2006